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1 Problem

Helmholtz showed in 1858 [1] (in a hydrodynamic context) that any vector field, say E, that
vanishes suitably quickly at infinity can be decomposed as,1,2,3

E = Eirr + Erot, (1)

where the irrotational and rotational components Eirr and Erot obey,4

∇ × Eirr = 0, and ∇ · Erot = 0. (2)

For the case that E is the electric field, discuss the relation of the Helmholtz decomposition
to use of the Coulomb gauge.5

2 Solution

The Helmholtz decomposition (1)-(2) is an artificial split of the vector field E into two parts,
which parts have interesting mathematical properties.

We recall that in electrodynamics the electric field E and the magnetic field B can be
related to a scalar potential V and a vector potential A according to (in SI units),

E = −∇V − ∂A

∂t
, (3)

B = ∇× A. (4)

This results in another decomposition of the electric field E which might be different from
that of Helmholtz. Here, we explore the relation between these two decompositions.

We also recall that the potentials V and A are not unique, but can be redefined in
a systematic way such that the fields E and B are invariant under such redefinition. A

1The essence of this decomposition was anticipated by Stokes (1849) in secs. 5-6 of [2].
2For a review of the Helmholtz’ decomposition in nonelectromagnetic contexts, see [3].
3Radiation fields, which fall off as 1/r at large distance r from their (bounded) source, do fall off

sufficiently quickly for Helmholtz’ decomposition to apply, as reviewed in [4]. Doubts as to this were expressed
in [5], but see [6]. See Appendix A for the Helmholtz decomposition of the electromagnetic fields of a Hertzian
(“point”, oscillating) dipole, which illustrates that such a decomposition is readily made when radiation is
present.

4The irrotational component is sometimes labeled “longitudinal” or “parallel”, and the rotational com-
ponent is sometimes labeled “solenoidal” or “transverse”.

5Vector plane waves E ei(k·r−ωt) do not vanish “suitably quickly” at infinity, so care is required in applying
the Helmholtz decomposition Eirr = (E · k) k̂, Erot = E− Eirr of this mathematically useful, but physically
unrealistic class of fields. See, for example, sec. 2.4.2 of [7].
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particular choice of the potentials is called a choice of gauge, and the relations (3)-(4) are
said to be gauge invariant.6

Returning to Helmholtz’ decomposition, we note that he also showed how,

Eirr(r) = −∇
∫ ∇′ · E(r′)

4πR
dVol′, and Erot(r) = ∇ ×

∫ ∇′ × E(r′)
4πR

dVol′, (5)

where R = |r − r′|. Time does not appear in eq. (5), which indicates that the vector field E at
some point r (and some time t) can be reconstructed from knowledge of its vector derivatives,
∇ ·E and ∇×E, over all space (at the same time t).7 The main historical significance of the
Helmholtz decomposition (1) and (5) was in showing that Maxwell’s equations, which give
prescriptions for the vector derivatives ∇ · E and ∇ × E, are mathematically sufficient to
determine the field E. Since ∇ ·E = ρtotal/ε0 and ∇×E = −∂B/∂t, the fields Eirr and Erot

involve instantaneous action at a distance and should not be regarded as physically real.
This illustrates how gauge invariance in necessary, but not sufficient, for electromagnetic
fields to correspond to “reality”.8,9,10

6The gauge transformation A → A + ∇χ, V → V − ∂χ/∂(ct), leaves the fields E and B unchanged. A
consequence of this is that when the vector potential is decomposed as A = Airr + Arot, the rotational part
is unchanged by transformations where ∇2χ �= 0. That is, in such cases, Airr + Arot → (Airr + ∇χ) + Arot,
where the term in parenthesis is the irrotational part of the transformed vector potential, so the rotational
part, Arot, is unchanged by the gauge transformation.

On the other hand, if ∇2χ = 0 everywhere, then the gauge transformation is Airr +Arot → Airr +(Arot +
∇χ), which leaves the irrotational part of A unchanged.

7If the field E is known only within a finite volume V, bounded by a closed surface S, then the Helmholtz
decomposition (1) and (5) becomes,

Eirr(r) = −∇
(∫

V

∇′ · E(r′)
4πR

dVol′ +
∫

S

n̂ · E(r′)
4πR

dArea′
)

, (6)

Erot(r) = ∇ ×
(∫

V

∇′ × E(r′)
4πR

dVol′ +
∫

S

n̂× E(r′)
4πR

dArea′
)

, (7)

where n̂ is the inward unit normal vector on the surface S. That is,

E = −∇V only if ∇ ×E = 0 in V, and n̂ × E = 0 on S, (8)
E = ∇ ×A only if ∇ ·E = 0 in V, and n̂ · E = 0 on S. (9)

Neglect of the conditions on the surface S can lead to error, as remarked in [8, 9, 10, 11].
8The forms (5) are not the only possible representations of Eirr and Erot. For example, we could write,

Eirr(r) = −∇
[∫ ∇′ · E(r′)

4πR
dVol′ + C

]
, and Erot(r) = ∇ ×

[∫ ∇′ × E(r′)
4πR

dVol′ + ∇χ

]
, (10)

for any constant C and any differentiable scalar function χ, without changing the values of Eirr and Erot.
Also, since [∇′ × E(r′)]/R = ∇′ × [E(r′)/R] + ∇ × E(r′)/R, if E falls off sufficiently quickly at large R

we can rewrite Erot as,

Erot(r) = ∇ × ∇ ×
∫

E(r′)
4πR

dVol′. (11)

9See Appendix A for an application of the Helmholtz decomposition to Hertzian dipole radiation
10The Helmholtz decomposition leads to interesting interpretations of the momentum and angular mo-

mentum associated with electromagnetic fields [7].
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The Helmholtz decomposition (1) and (5) can be rewritten as,

E = −∇V + ∇ × F, (12)

where,

V (r) =

∫ ∇′ · E(r′)
4πR

dVol′, and F(r) =

∫ ∇′ ×E(r′)
4πR

dVol′. (13)

It is consistent with usual nomenclature to call V a scalar potential and F a vector
potential. That is, Helmholtz decomposition lends itself to an interpretation of fields as
related to derivatives of potentials.

When the vector field E is the electric field, it also obeys Maxwell’s equations, two of
which are (in SI units and for media where the permittivity is ε0),

∇ · E =
ρ

ε0

, and ∇× E = −∂B

∂t
, (14)

where ρ is the electric charge density and B is the magnetic field.
If we insert these physics relations into eq. (13), we find,

V (r) =

∫
ρ(r′)

4πε0R
dVol′, (15)

F(r) = − ∂

∂t

∫
B(r′)
4πR

dVol′. (16)

The scalar potential (15) is calculated from the instantaneous charge density, which is
exactly the prescription (44) of the Coulomb gauge. That is, Helmholtz + Maxwell implies
use of the Coulomb-gauge prescription for the scalar potential.

However, eq. (16) for the vector potential F does not appear to be that of the usual
procedures associated with the Coulomb gauge. Comparing eqs. (12)-(13) and (16), we see
that we can introduce another vector potential A which obeys,

∇ × F = −∂A

∂t
, (17)

such that,

A(r) = ∇ ×
∫

B(r′)
4πR

dVol′, (18)

and,

E = −∇V − ∂A

∂t
, (3)

which is the usual way the electric field is related to a scalar potential V and a vector potential
A. Note also that eq. (18) obeys the Coulomb gauge condition (40) that ∇ · A = 0.11

Thus, the Helmholtz decomposition (1) and (5) of the electric field E is equiva-
lent to the decomposition (3) in terms of a scalar and a vector potential, provided
those potentials are calculated in the Coulomb gauge.12

11See, for example, sec. 3 of [12].
12The fields Eirr = −∇V − ∂Airr/∂(ct) and Erot = −∂Arot/∂(ct) can be deduced from scalar potential

V and vector potential A = Airr + Arot in any gauge, but only in the Coulomb gauge is A(C)
irr = 0 such that

the Helmholtz decomposition has the simple form Eirr = −∇V (C) and Erot = −∂A(C)/∂t.
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Using various vector calculus identities, we have,

A(r) = ∇ ×
∫

B(r′)
4πR

dVol′ =

∫
∇ 1

R
× B(r′)

4π
dVol′ = −

∫
∇′ 1

R
× B(r′)

4π
dVol′

=

∫ ∇′ × B(r′)
4πR

dVol′ +
∫

∇′ × B(r′)
4πR

dVol′

=

∫ ∇′ × B(r′)
4πR

dVol′ −
∮

dArea′ × B(r′)
4πR

=

∫ ∇′ × B(r′)
4πR

dVol′, (19)

provided B vanishes sufficiently quickly at infinity. In view of the Maxwell equation ∇·B = 0,
we recognize eq. (19) as the Helmholtz decomposition B = ∇ × A for the magnetic field.13

We can go further by invoking the Maxwell equation,

∇ × B = μ0J +
1

c2

∂E

∂t
, (23)

where J is the current density vector, the medium is assumed to have permeability μ0, and
c is the speed of light, so that,

A(r) =
μ0

4π

∫
J(r′)
R

dVol′ +
∂

∂t

∫
E(r′)
4πc2R

dVol′. (24)

This is not a useful prescription for calculation of the vector potential, because the second
term of eq. (24) requires us to know E(r′)/c2 to be able to calculate E(r).14 But, c2 is a big
number, so E/c2 is only a “small” correction, and perhaps can be ignored.15 If we do so,

13We can verify the consistency of eqs. (18) and (19) by taking the curl of the latter. For this, we note
that,

∇ × ∇′ ×B(r′)
4πR

= −(∇′ × B(r′)) × ∇
(

1
4πR

)
= (∇′ ×B(r′)) × ∇′

(
1

4πR

)
. (20)

The i-component of this is,

εi,j,kεjlm(∂′
lBm)∂′

k(1/4πR) = δki
lm(∂′

lBm)∂′
k(1/4πR) = (∂′

kBi)∂′
k(1/4πR) − (∂′

iBk)∂′
k(1/4πR)

= ∂′
k[Bi∂

′
k(1/4πR)] − Bi∇′2(1/4πR) − ∂′

k[(1/4πR) ∂′
iBk] + (1/4πR) ∂′

i∇′ · B
= Bi(r′) δ3(r − r′) + ∂′

k[Bi∂
′
k(1/4πR) − (1/4πR) ∂′

iBk]. (21)

The volume integral of this gives B(r) plus a surface integral that vanishes if the magnetic field falls off
sufficiently quickly at large distances. That is, ∇ × A = B for the vector potentials given by eqs. (18) and
(19).

We could also proceed by taking the curl of eq. (18), noting that,

∇ ×
(

∇ × B(r′)
4πR

)
= ∇

(
∇ · B(r′)

4πR

)
−B(r′)∇2

(
1

4πR

)
= ∇

(
∇ · B(r′)

4πR

)
+ B(r′) δ3(r − r′). (22)

Then, integrating this over dVol′ gives B(r) plus a surface integral that vanishes for magnetic fields that fall
off sufficiently quickly at large distances. So, again we find that ∇ ×A = B.

This footnote is due to Vladimir Hnizdo. See also [13].
14Using the Helmholtz decomposition for E in eq. (24) permits us to proceed without knowing E, provided

we know the charge density ρ and the time derivative ∂B/∂t, which is no improvement conceptually.
15See [14] for an argument that the second integral of eq. (24) vanishes in the quasistatic approximation.
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then,

A(r) =
μ0

4π

∫
J(r′)
R

dVol′, (25)

which is the usual instantaneous prescription for the vector potential due to steady currents.
Thus, it appears that practical use of the Helmholtz decomposition + Maxwell’s equations is
largely limited to quasistatic situations, where eqs. (15) and (25) are sufficiently accurate.16

Of course, we exclude wave propagation and radiation in this approximation. We can
include radiation and wave propagation if we now invoke the usual prescription, eqs. (46)-(47)
of Appendix B, for the vector potential in the Coulomb gauge. However, this prescription
does not follow very readily from the Helmholtz decomposition, which is an instantaneous
calculation.

Note that in the case of practical interest when the time dependence of the charges and
currents is purely sinusoidal at angular frequency ω, i.e., e−iωt, the Lorenz gauge condition
[16] (39) becomes,

V = − ic

k
∇ ·A. (26)

In this case it suffices to calculate only the vector potential A, and then deduce the scalar
potential V , as well as the fields E and B, from A.

However, neither the Coulomb gauge condition ∇ ·A = 0 nor the Lorenz gauge condition
(39) suffices, in general, for a prescription in which only the scalar potential V is calculated,
and then A, E and B are deduced from this. Recall that the Helmholtz decomposition tells
us how the vector field A can be reconstructed from knowledge of both ∇ · A and ∇ × A.
The gauge conditions tell us only ∇ · A, and we lack a prescription for ∇ × A in terms of
V .

[In 1 dimension, ∇ × A = 0, so in 1-dimensional problems we can deduce everything
from the scalar potential V plus the gauge condition.17 But life in 3 dimensions is more
complicated!]

A Appendix: Helmholtz Decomposition of Hertzian

Dipole Radiation

The electric and magnetic fields of an ideal, point Hertzian electric dipole can be written (in
Gaussian units) as,

E = k2p(r̂ × p̂) × r̂
cos(kr − ωt)

r
+ p[3(p̂ · r̂) r̂ − p̂]

[
cos(kr − ωt)

r3
+

k sin(kr − ωt)

r2

]
, (27)

B = Brot = k2p(r̂ × p̂)

[
cos(kr − ωt)

r
− sin(kr − ωt)

kr2

]
, (28)

16A version of Helmholtz’ theorem in which the integrands involve retarded quantities has been given in
[15], especially sec. 4.

17For additional discussion of electrodynamics in one spatial dimension, see [19].
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where r̂ = r/r is the unit vector from the center of the dipole to the observer, p = p cos ωt p̂
is the electric dipole moment vector, ω = 2πf is the angular frequency, k = ω/c = 2π/λ is
the wave number and c is the speed of light [20, 21].

The irrotational part of the electric field is the instantaneous field of the electric dipole,

Eirr = p[3(p̂ · r̂)r̂ − p̂]
cosωt

r3
. (29)

Thus, the rotational part of the electric field is,

Erot = E − Eirr = k2p(r̂ × p̂) × r̂
cos(kr − ωt)

r

+p[3(p̂ · r̂) r̂ − p̂]

[
cos(kr − ωt) − cosωt

r3
+

k sin(kr − ωt)

r2

]
. (30)

Both fields Eirr and Erot have instantaneous terms.
The flow of energy in the electromagnetic field is described by the Poynting vector S, so

the Helmholtz decomposition leads us to write,

S = S1 + S2 =
c

4π
Eirr × Brot +

c

4π
Erot × Brot. (31)

Using eqs. (28)-(29), we have that,,

S1 =
ck2p2

4π
[(3 cos2 θ − 1) r̂ − 2 cos θ p̂] cos ωt

[
cos(kr − ωt)

r4
− sin(kr − ωt)

kr5

]
, (32)

where θ is the angle between vectors r and p. Similarly,

S2 =
c

4π

{
k4p2 sin2 θ r̂

[
cos2(kr − ωt)

r2
− cos(kr − ωt) sin(kr − ωt)

kr3

]

+k2p2[(3 cos2 θ − 1) r̂ − 2 cos θ p̂]

[
cos2(kr − ωt)− sin2(kr − ωt)

r4

+cos(kr − ωt) sin(kr − ωt)

(
k

r3
− 1

kr5

)

− cosωt

(
cos(kr − ωt)

r4
− sin(kr − ωt)

kr5

)]}
. (33)

Neither S1 nor S2 describes the flow of energy at an identifiable speed, so the Helmholtz
decomposition, which is based on present source terms, does not seem well suited to a general
characterization of the flow of energy in electromagnetic fields.

We can restrict our attention to the region very close to the source, where kr � 1 and
we have,

S1(kr � 1) =
ck2p2

4π
[(3 cos2 θ − 1) r̂ − 2 cos θ p̂]

(
cos2 ωt

r4
+

cos ωt sinωt

kr5

)
, (34)
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and,

S2(kr � 1) =
c

4π

[
k4p2 sin2 θ r̂

(
cos2 ωt

r2
+

cos ωt sinωt

kr3

)

+k2p2[(3 cos2 θ − 1) r̂ − 2 cos θ p̂]

(
k cosωt sin ωt

r3
− sin2 ωt

r4

)]
. (35)

Here, the separation of the total Poynting vector S into S1 and S2 is cleaner than for large
kr, but, to this author, this separation is still not associated with any crisp physical insight.

We can also consider only the time average of eqs. (32)-(33),

〈S1〉 =
ck2p2

8π
[(3 cos2 θ − 1) r̂ − 2 cos θ p̂]

(
cos kr

r4
− sin kr

kr5

)
, (36)

and,

〈S2〉 =
c

8π

k4p2 sin2 θ

r2
r̂ − 〈S1〉 . (37)

Again, there seems to be little physical insight associated with this decomposition.

B Appendix: Coulomb Gauge

The relations (in SI units),

E = −∇V − ∂A

∂t
, and B = ∇ × A (38)

between the electric and magnetic fields E and B and the potentials V and A permits various
conventions (gauges) for the potentials. According to Helmholtz, the vector potential is
determined by its curl, ∇ × A = B, and by its divergence, ∇ · A. So, to complete the
determination of A, given B, we must specify its divergence, which latter is called the gauge
condition.

One popular choice is the Lorenz gauge [16],

∇ · A = − 1

c2

∂V

∂t
(Lorenz). (39)

In situations with steady charge and current distributions (electrostatics and magneto-
statics), ∂V/∂t = 0, so the condition (39) reduces to,

∇ · A = 0 (Coulomb). (40)

Even in time-dependent situations it is possible to define the vector potential to obey eq. (40),
which has come to be called the Coulomb gauge condition.

Using eq. (38) together with the Maxwell equation ∇ ·E = ρ/ε0 leads to,

∇2V +
∂

∂t
∇ · A = − ρ

ε0
, (41)
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and the Maxwell equation ∇× B = μ0J + ∂E/∂c2t leads to,

∇2A − 1

c2

∂2A

∂t2
= −μ0J + ∇

(
∇ · A +

1

c2

∂V

∂t

)
. (42)

Thus, in the Coulomb gauge (40), eq. (41) becomes Poisson’s equation,

∇2V (C) = − ρ

ε0
, (43)

which has the formal solution,

V (C)(r, t) =
1

4πε0

∫
ρ(r′, t)

R
dVol′ (Coulomb), (44)

where R = |r − r′|, in which changes in the charge distribution ρ instantaneously affect the
potential V at any distance.18

For completeness, a formal solution for the vector potential in the Coulomb gauge follows
from eq. (42) with ∇ · A = 0,

∇2A(C) − 1

c2

∂2A(C)

∂t2
= −μ0J + ε0μ0

∂∇V (C)

∂t
≡ −μ0J̃, (45)

using the method of retarded potentials [16, 17, 18],19

A(C)(r, t) =
μ0

4π

∫
J̃(r′, t′ = t − R/c)

R
dVol′. (46)

The vector J̃ can be re-expressed using a Helmholtz decomposition of the current density
J = Jirr + Jrot. Then, recalling eq. (5), the continuity equation ∇ · J + ∂ρ/∂t = 0, and
eq. (44),

Jirr(r, t) = −∇
∫ ∇′ · J(r′, t)

4πR
dVol′ = ∇

∫
∂ρ(r′, t)

∂t

dVol′

4πR
= ε0

∂∇V (C)(r, t)

∂t
, (47)

and we see from eqs. (11) and (45) that,

J̃ = Jrot(r, t) = ∇ × ∇ ×
∫

J(r′, t)
4πR

dVol′ = J − Jirr = J − ε0
∂∇V (C)(r, t)

∂t
, (48)

which is called the transverse current in [23]. Note that Jirr and Jrot are nonzero throughout
all space (except perhaps on certain curves and surfaces) if J is nonzero anywhere.

While the Coulomb-gauge vector potential (46) would appear to propagate (in vacuum)
with the speed of light, this is not so in general, as illustrated by the case of a Hertzian electric

18It is possible to choose gauges for the electromagnetic potentials such that some of their components
appear to propagate at any specified velocity v [23, 24, 25]. One can also choose that the scalar potential
be zero [26], or have no time dependence [27] such that all time dependence of the electric field is associated
with that of the vector potential.

19For a static current density, eq. (46) reduces to eq. (25).
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dipole, reviewed in Appendix B of [26]. And, the part of the electric field, −∂A(C)/∂t, derived
from it has pieces that propagate instantaneously, as needed to cancel the instantaneous
behavior of the part, −∇V (C), derived from the Coulomb-gauge scalar potential (44). For
additional discussion, see, for example, [28, 29, 30, 31].

Unless the geometry of the problem is such that the rotation current density Jrot is easy
to calculate, use of the Coulomb gauge is technically messier than the use of the Lorenz
gauge, in which case the (retarded) potentials are given by the retarded potentials,

V (L)(r, t) =
1

4πε0

∫
ρ(r′, t′ = t − R/c)

R
dVol′ (Lorenz), (49)

A(L)(r, t) =
μ0

4π

∫
J(r′, t′ = t − R/c)

R
dVol′ (Lorenz), (50)

where R = |r − r′|.
Analyses of circuits are typically performed in the quasistatic approximation that effects

of wave propagation and radiation can be neglected. In this case, the speed of light is taken
to be infinite, so that the Lorenz gauge condition (39) is equivalent to the Coulomb gauge
condition (40), and the potentials are calculated from the instantaneous values of the charge
and current distributions. As a consequence, gauge conditions are seldom mentioned in
“ordinary” circuit analysis.

B.1 Alternative Forms of the Coulomb-Gauge Potentials

While the potentials (44) and (46) can be considered to be the standard forms for the
Coulomb gauge, they are not the only possible ones.

If the gauge-transformation function χ obeys Laplace’s equation, ∇2χ = 0, then the
vector potential of the gauge transformation A(C) → A(C) +∇χ, V (C) → V (C) − ∂χ/∂t, also
satisfies the Coulomb-gauge condition (40).20

In quasistatic examples of charge and current densities within a bounded volume, and
where radiation can be ignored, the standard potentials (44) and (46) go to zero at large
distances. Then, all of the alternative Coulomb-gauge potentials, generated by a gauge
function χ that obeys Laplace’s equation do not go to zero at infinity in all directions. This
follows from the uniqueness theorem for solutions to Laplace’s equation with either Dirichlet
or Neumann boundary conditions (see, for example sec. 1.9 of [21]), since the trivial case
χ = 0 has both χ and its derivatives equal to zero (at large distances). So, when one adds
the constraint that the Coulomb-gauge potentials must vanish at infinity, then the standard
forms (44) and (46) are the only such solutions (if indeed they vanish at infinity).21

20For example, the gauge functions χ±Bxy/2 lead from the axially symmetric vector potential of a uniform
magnetic field B ẑ inside an axially symmetric current distribution to the so-called “Landau” potentials,
which are nonzero at infinity. See, for example, sec. 2.1 of [32].

21It is claimed in eq. (B.26), p. 17, of [33] that Arot (called A⊥ there) is gauge invariant, since the Fourier
transform of the gauge transformation A → A′ = A + ∇χ is A′

k = Ak + ikχk. This makes it appear
that the term ikχk contributes only to the irrotational part of A′, since the Fourier transform of Airr is
Ak,irr = (k̂ · Ak) k̂ (as in eq. (B.14a) of [33]), such that A′

rot = Arot. However, k̂ is undefined for k = 0,
such that the Fourier component Ak=0 is entirely rotational. Then, if ∇2χ = 0, its Fourier transform is
0 = −k2χk = ik · (ikχk), such that ikχk can be nonzero for k = 0, in which case ∇χ contributes to A′

rot

and this differs from Arot.
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B.2 Coulomb-Gauge Potentials for Hertzian Dipole Radiation

The fields (27)-(28) for a Hertzian electric dipole are typically deduced from the Lorenz-gauge
potentials22 (here given in Gaussian units),

A(L) = Re

(
−ikp p̂

ei(kr−ωt)

r

)
= kp p̂

sin(kr − ωt)

r
, (51)

V (L) = Re

(
− i

k
∇ ·A(L)

)
= p(p̂ · r̂)

(
cos(kr − ωt)

r2
+ k

sin(kr − ωt)

r

)
, (52)

recalling the Lorenz-gauge condition, ∇ · A(L) = −∂V (L)/∂ct = Re(ikV (L)).
In the Coulomb gauge the scalar potential is the instantaneous Coulomb potential,

V (C) = Re

(
p(p̂ · r̂2)

e−iωt)

r

)
= p(p̂ · r̂)cosωt

r2
. (53)

The Coulomb-gauge vector potential is most readily obtained from the relation,

E = Re

(
−∇V (C) − ∂A(C)

∂ct

)
= Re(−∇V (C) + ikA(C)), (54)

A(C) = Re

(
− i

k
E − i

k
∇V (C)

)
(55)

= Re

(
−ikp

ei(kr−ωt)

r
r̂ × (p̂× r̂) + p

[
ei(kr−ωt)

r2
+

i(ei(kr−ωt) − e−iωt)

kr3

]
[p̂− 3(p̂ · r̂)r̂]

)

= kp
sin(kr − ωt)

r
[p̂− (p̂ · r̂)r̂] + p

[
cos(kr − ωt)

r2
− (sin(kr − ωt) + sinωt)

kr3

]
[p̂− 3(p̂ · r̂)r̂].

Note that the very first term in the last line of eq. (55) is the same as the Lorenz-gauge
vector potential (51). This illustrates the transformation of Lorenz-gauge potentials to those
in other gauges, as discussed in [25]. Note also that the last term in the last line of eq. (55)
is instantaneous, whose contribution to the electric field in eq. (54) cancels that of the
instantaneous scalar potential.
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